The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein

نویسندگان

  • Philippe Cupers
  • Mustapha Bentahir
  • Katleen Craessaerts
  • Isabelle Orlans
  • Hugo Vanderstichele
  • Paul Saftig
  • Bart De Strooper
  • Wim Annaert
چکیده

We investigated the relationship between PS1 and gamma-secretase processing of amyloid precursor protein (APP) in primary cultures of neurons. Increasing the amount of APP at the cell surface or towards endosomes did not significantly affect PS1-dependent gamma-secretase cleavage, although little PS1 is present in those subcellular compartments. In contrast, almost no gamma-secretase processing was observed when holo-APP or APP-C99, a direct substrate for gamma-secretase, were specifically retained in the endoplasmic reticulum (ER) by a double lysine retention motif. Nevertheless, APP-C99-dilysine (KK) colocalized with PS1 in the ER. In contrast, APP-C99 did not colocalize with PS1, but was efficiently processed by PS1-dependent gamma-secretase. APP-C99 resides in a compartment that is negative for ER, intermediate compartment, and Golgi marker proteins. We conclude that gamma-secretase cleavage of APP-C99 occurs in a specialized subcellular compartment where little or no PS1 is detected. This suggests that at least one other factor than PS1, located downstream of the ER, is required for the gamma-cleavage of APP-C99. In agreement, we found that intracellular gamma-secretase processing of APP-C99-KK both at the gamma40 and the gamma42 site could be restored partially after brefeldin A treatment. Our data confirm the "spatial paradox" and raise several questions regarding the PS1 is gamma-secretase hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenilin 1 Controls γ-Secretase Processing of Amyloid Precursor Protein in Pre-Golgi Compartments of Hippocampal Neurons

Mutations of presenilin 1 (PS1) causing Alzheimer's disease selectively increase the secretion of the amyloidogenic betaA4(1-42), whereas knocking out the gene results in decreased production of both betaA4(1-40) and (1-42) amyloid peptides (De Strooper et al. 1998). Therefore, PS1 function is closely linked to the gamma-secretase processing of the amyloid precursor protein (APP). Given the ong...

متن کامل

Generation of Amyloid-β Is Reduced by the Interaction of Calreticulin with Amyloid Precursor Protein, Presenilin and Nicastrin

Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms un...

متن کامل

Specificity of presenilin‐1‐ and presenilin‐2‐dependent γ‐secretases towards substrate processing

The two presenilin-1 (PS1) and presenilin-2 (PS2) homologs are the catalytic core of the γ-secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1- and PS2-dependent γ-secretases to the production of β-amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design ...

متن کامل

Aph-2/Nicastrin An Essential Component of γ-Secretase and Regulator of Notch Signaling and Presenilin Localization

The Notch signaling pathway plays a role in cell fate specification in many metazoans. A critical aspect of Notch activation involves proteolysis of the Notch receptor. This cleavage event requires Presenilin as a component of a large multiprotein complex, gamma-secretase. This complex mediates a similar cleavage event of the beta-amyloid precursor protein (APP). The transmembrane protein Nicas...

متن کامل

Cleavage of amyloid precursor protein by an archaeal presenilin homologue PSH.

Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase contributes to the development of Alzheimer's disease. More than 200 disease-derived mutations have been identified in presenilin (the catalytic subunit of γ-secretase), making modulation of γ-secretase activity a potentially attractive therapeutic opportunity. Unfortunately, the technical challenges in dealing with intact γ-se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2001